When the reaction product was prepared as a solid and
then dissolved in acetonitrile, the major absorption
was found at —54 ppm. These results indicate that
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2 and 3 are in equilibrium in acetonitrile, but the equi-
librium lies far toward 3 which is of course in agreement
with the conductivity data,?
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Abstract: The crystal and molecular structures of the fluxional molecule bis(cyclooctatetraene)triruthenium tetra-
carbonyl, (CsHs)sRuz(CO)y, have been determined from 1056 independent, nonzero reflections collected with a
counter diffractometer. The compound crystallizes in the orthorhombic space group P2,2,2, with four molecules
in a unit cell of dimensions @ = 9.737 A, 5 = 12.591 A, and ¢ = 15.268 A (poves = 2.18 g cm™3; pared = 2.21 gem=9).
The structure, excluding hydrogen atoms, was solved from Patterson and electron density maps and re-
fined by least-squares methods to a conventional unweighted R factor of4.079;. The molecules are dissymmetric;
by taking into account anomalous dispersion by the ruthenium atoms, the correct enantiomorph has been selected
for the crystal studied. Each molecule contains a triangle of Ru atoms (metal-metal distances of 2.782 (2),
2.928 (2), and 2.947 (2) A), similar to that in Rus(CO);;, and two cyclooctatetraene rings, each bound to a pair of
ruthenium atoms. The structure is in accord with the mass spectral evidence for the existence of a metal atom
cluster and accounts for the observed characteristic infrared spectrum in the CO stretching region. The bonding
of the rings to pairs of metal atoms is extraordinary and cannot be related to any single type of olefin-metal inter-
action known. Instead it may be described as about halfway between two known and more-or-less symmetrical
orientations for a (CiHg)M, system. Thus the exceptional deformability which might be expected for a fluxional

molecule along the reaction coordinate of its rearrangement pathway is strikingly illustrated.

mong the various products that have been isolated
and characterized from the reaction of Ru3(CO);,
with cyclooctatetraene(COT),*" there is one which
is produced exclusively when the process is carried out
in refluxing octane. The crystalline substance so
obtained is shown by elemental analysis and mass
spectrum to be C;sHicRuy(CO),, and its proton nmr
spectrum at room temperature consists of one sharp
peak. Consequently, the compound was expected to
contain a metal atom cluster and is also a fluxional
organometallic molecule, with the fluxional behavior
implying retention of CgHg monocycles. It was
obviously of interest to elucidate the structure of
(COT)Ru;(CO), in the solid state, and a single-crystal
X-ray study was undertaken. The results of this study,
which have previously been briefly communicated,?
are reported here in full.
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Experimental Procedure

Crystalline C;¢H;sRus(CO); was prepared by the reaction of
Ruy(CO); with cyclooctatetraene in refluxing octane as described
previously.¢ Optical examination showed the lustrous, red, air-
stable crystals to be orthorhombic prisms, and preliminary Weissen-
berg (Ok/ and 14/ levels) and precession (#0/, hl/, hkO, and hkl
levels) photographs indicated Laue symmetry mmm, with slight
deviations from this symmetry attributable to anomalous dispersion
effects and suggesting crystal point group 222. The observed sys-
tematic absences (00 for 4 = 2n, 0kO for k s 2n, and 00/ for /=
2n) indicated the unique choice of the orthorhombic space group
P2,2,2,. The unit cell dimensions, determined with copper radia-
tion (A Ky 1.5405 A, \ Kon 1. 5443 A) by a method described else-
wheregarea—9737i0005Ab 12.591 & 0.007 A, and ¢ =
15.268 == 0,008 A, The observed density of 2.18 g cm¢, deter-
mined by flotation, agrees with the calculated density of 2.21 g
cm~? for a formula weight of 623.6, Z = 4, and a unit cell volume of
1871.8 A3,

Intensity data were collected on a General Electric quarter-circle
automated XRD-6 diffractometer equipped with a Datex control
unit. A crystal of approximate dimensions 0.2 X 0.2 X 0.3 mm
was so aligned that its @ axis coincided with the ¢ axis of the instru-
ment. The distances from the crystal to the source and from the
crystal to the circular screening aperture (2°) were 5.73 and 7.05
in., respectively. Mo K radiation, filtered by zirconium foil, was
used to measure 1165 independent reflections lying within one octant
of a sphere in reciprocal space corresponding to 4 spacings 2> 1 A,
The intensities were measured with a scintillation counter with the
pulse height discriminator set to receive 95%; of the Mo Ka radia-
tion with the window centered on the Mo Ko peak. The data were
collected using a coupled /28 scan technique at a 28 scan rate of
2°/min. The peak counts, P, were obtained from a 26 scan of 1.33°

(9) M. J. Bennett, F. A. Cotton, and J. Takats, ibid., 90, 903 (1968).
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Figure 1. The molecular structure projected on the gb plane.

from 20..1.4 — 0.67° to 20..1.a + 0.66°. Stationary background
counts, Bi, Bs, of 10 sec were taken at each of the limits of the scan.
From these readings the intensity, I, assuming a linear change in
background (or its equivalent) between the two limits of the scan, is
given by I = P — 2(B1 + B)). Periodic checks of three standard
reflections, having no 28 dependence, showed variations in intensi-
ties (=2 %) which were random with time and could be attributed
to fluctuations in electronic circuits rather than to crystal decom-
position, No appreciable variations in the intensities of the #00
reflections were observed as a function of crystal orientation.
Moreover, an absorption calculation involving a representative
portion of the data showed the transmission factors to range from
0.865 to 0.900, and absorption corrections (u = 17.3 cm™!) were
therefore not applied.

Four strong reflections which exceeded the linear response range
of the counter were discarded, and statistically insignificant reflec-
tions (105) were rejected using the criteria (1) I < Oand 2) I < 3
(P + [Tp/Tal4B: + B:l)'/?, where Tp is the peak counting time and
Ts is the background counting time. The remaining 1056 reflec-
tions were corrected for Lorentz and polarization effects and a
set of | Fo|? and |F,| values (on a relative scale) was thus obtained.

Solution and Refinement of the Structure

A three-dimensional Patterson map revealed the ex-
pected triangle of ruthenium atoms, and the rest of the
structure was solved by conventional least-squares and
Fourier calculations. The atomic scattering factors
used during this analysis were those of Cromer and
Waber,!? and the anomalous dispersion corrections,
both real (Af" = —1.37 e) and imaginary (Af"" = 1.09
e) parts, which were applied to ruthenium scattering
factors, were those given by Cromer.!! The function
minimized during the least-squares refinement was
Sw(|F,| — |F.)? where |F,| is the observed structure
amplitude, |F,| is the calculated structure amplitude,
and w is the weighting factor.

Four cycles of full matrix least-squares refinement of
scale factor, atomic coordinates, and isotropic thermal
parameters for all atoms led to a discrepancy index of
R, = Z|F,| — |FJ|/ZIF,] = 0.053. The weighted
residual, R, = {Zw[|F,] — [|F.[1)/Zw|F,|?}, using
unit weights was 0.073. At this point an experimental
weighting scheme similar to that of Doedens and Ibers!2
(w = [e(F)]"? was introduced, and the ruthenium
atoms were assigned anisotropic temperature factors of
the form CXp[—(611h2 + 622k2 + 63312 + 2612]1]( +
2618l + 2Bs3kD)]. Two final cycles of refinement of
positional and thermal parameters for all atoms resulted
in convergence with R; = 0.041 and R, = 0.058.

(10) D. T. Cromer and J. T. Waber, Acta Cryst., 18, 104 (1965).

(11) D. T. Cromer, ibid., 18, 17 (1965).

(12) R. J. Doedens and J. A. Ibers, Inorg. Chem., 6, 204 (1967).
Our weighting scheme differs only in that p = 0.045.

For an acentric space group |F(Akl)| s |F(hEI)|
when the effects of anomalous dispersion are important
(i.e., when Af’’ is appreciable). In particular, for
P2u2:2,, {|F(hkD)| = |F(hED| = |F(hkD)| = |F(hED)!}
= {|F(hkD| = |F(hkD)| = |F(hED)| = |F(hkD|} under
such conditions, and it was thus necessary to test both
enantiomeric structural solutions. In the absence
of a complete data set the Hamilton R-factor test!®®
may be employed for the determination of absolute
configuration on the basis of refinement of both struc-
tural models. Therefore, the structural solution A
(the one just discussed, having atom positional co-
ordinates x, y, z) and one of the alternative solutions,
B (with positional coordinates —x, y, z, resulting from
reflection of the original structure in the (100) plane),
were each refined in the same manner. The latter
structure was accepted as the correct configuration
because it converged to discrepancy indices R, =
0.0407 and R, = 0.057. If these discrepancy indices
for the two structures are used to evaluate the structures
as hypotheses of one degree of freedom using the R-
factor test, then structure B is validated at the 99.597
confidence level. In the nonpolar space group P2,2,2,,
no first-order errors should occur in the coordinates of
the incorrect structural solution,"® and in this case none
were found; no criterion of correctness is provided by
molecular dimensions. Thus, by taking into account
anomalous dispersion by the ruthenium atoms, the
absolute configuration of the (COT);Ru;(CO); mole-
cule has been determined for the crystal studied. All
subsequent discussion pertains to structure B.

During the final cycle of refinement, no parameter
shifted more than one-eighth of its estimated standard
deviation. The principal features of a final difference
Fourier map computed at this point were (1) peaks of
0.88 and 0.86 e/A? in the vicinity of oxygen atoms
O,p and O,p (Figure 1), (2) peaks of 0.72-0.55 e/A?
which could be attributed to anisotropic motion of
other atoms in the carbonyl moieties, and (3) peaks less
than 0.50 e/A? which seemed indicative of unassigned
electron density in the regions of the COT rings. Al-
though some definite indications of the H atoms were
present, these positions did not seem reliable enough to
form a basis for refinement. The error introduced into
the model by our neglect of the light atom anisotropic
vibration was also reflected by the final standard devia-
tion for an observation of unit weight being 1.591, in-
stead of the expected value of unity. The experimental
weighting scheme satisfied, within acceptable limits,
Cruickshank’s criterion,'* and a comparison of the
observed and final calculated structure amplitudes did
not suggest that a correction for extinction was neces-
sary.

The following programs for the IBM 7094 and 360
computers were used in the structure analysis and
interpretation: (1) a modified version of “M.LT.
X-Ray Goniometer Package-MixG-2,” 1962, by D. P.
Shoemaker; (2) general data reduction program,
PMMO, by M. J. Bennett; (3) a modified version of Four-
ier analysis program, FORDAP, by A. Zalkin; (4) “Full-
Matrix Crystallographic Least-Squares,”” SFLs5, 1966,
by C. T. Prewitt; (5) “Molecular Geometry with Esti-

(13) (a) W. C. Hamilton, Acta Cryst., 18, 502 (1965); (b) D. W. J
Cruickshank and W. S. McDonald, ibid., 23, 9 (1967).

(14) W. J. Cruickshank in “Computing Methods in Crystallography,”
J. S. Rollett, Ed., Pergamon Press, New York, N. Y., 1965, p 113,
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Table 1.

Observed and Calculated Structure Amplitudes (X 10) (in Electrons) for (CsHs):Ru(CO),
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0 5 668 675 5 31165 1250 3 21584 lesl O 4 903 875 2 2

1 5 666 655 6 3 699 700 4 2 Tel Te5 1 4 999 996 32

2 5 242 2% T3 1084 ll6s 5 2 530 524 2 4 589 584 4 2

305 363 342 83 591 602 6 2 495 465 3 4 1G45 1081 o 3

« 5 839 BTE 9 3 956 954 T2 383 36T 4 4 446 4Ts 13

5 5 750 770 10 3 214 231 B2 211 215 5 4 174 270 2 3

6 5 453 4% 0 4 le2 180 9 2 357 34 6 4 212 185 4 3

T 5 176 789 1 4 1014 1035 13 518 510 7 4 392 393 0

85 448 aas 2 4 1103 1148 2 3 698 739 8 4 523 531 1o

9 5 526 502 3 4 T40  T36 303 438 419 0 5 552 Sl 2 .

10 5 750 729 4 4 638 670 4 3 Te2 T22 15 435 466 3.

0 & 822 60l 5 4 321 426 5 3 40l 391 2 5 e85 702 a5
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mated Standard Deviations,” MGEOM, 1964, by J. S.
Wood; (6) crystallographic bond distance, bond angle,
and dihedral angle program, DISTAN, 1963, by D. P.
Shoemaker; (7) data presentation program, PUBTAB,
by R. C. Elder.

Results

The observed structure amplitudes, ]Fo}, and the final
calculated structure factors, F,, in units of 0.1 electron
are listed in Table I. The final fractional coordinates
and thermal parameters are given in Table II. The
standard deviations, reported in parentheses, are de-
rived from the inverse matrix in the final cycle of least-
squares refinement. Pertinent molecular dimensions
are given in Tables IIl and IV.

Figure 1 shows the molecule projected on the (001)
plane and indicates the numbering scheme. Note that
the C and O atoms of the same CO group carry the
same number. Another view of the molecule, a pro-
jection on the (010) plane, is presented in Figure 2.
Figure 3 shows a composite picture of the two CsHsRu,

moieties; these are crystallographically independent,
but nearly isostructural. Thus, Figure 3 presents

Figure 2. The molecular structure projected on the ac plane.

average values of what are in effect chemically identical
bond lengths.
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Figure 3. A composite picture of the two CgHgRu, moieties,
giving mean values of the chemically equivalent bond lengths.
For each of the atoms except Ru(3), the use of a pair of numbers,
say (1,2), implies either 1 or 2. No superposition of atoms is
implied. The numbers given to two decimal places are inter-
nuclear distances in A and the remaining three-digit numbers are
C-C-C angles.

Discussion

The crystal structure of (CsHg):Ruy(CO); consists
of the packing of discrete molecular units separated by
normal intermolecular contact distances. Each mo-

Table II. Final Atomic Positional and Thermal Parameterse

Atom X y z B, A
Ru, —0.66267 (13) 0.35439 (10) 0.88661 (8) 2.4%
Ru; —0.61212(14) 0.56985(10) 0.86235(9) 3.0?
Ru; —0.89698 (12) 0.49256(9) 0.84821(7) 2.0
C —1.0242(17) 0.6327(14) 0.8718(11) 3.8(4)
C, —0.9821 (18) 0.5931(15) 0.9545(11) 3.9(4)
C; —0.8445(17) 0.5773(13) 0.9829(10) 3.2(3)
C, —0.7198 (19) 9.6371 (16) 0.9848 (12) 4.4(4)
C; —0.6671 (21) 0.7195(15) 0.9296(12) 4.8(4)
Cs —0.6942(19) 0.7299 (14) 0.8379(12) 4.1(4)
G —0.7947 (18) 0.6672(14) 0.7856(12) 3.8 (4)
Cs —0.9369 (15) 0.6483(13) 0.7973(10) 2.7(3)
C, —1.0556(15) 0.3902(11) 0.7979 (9) 2.3(3)
Cro —1.0199(17) 0.3568 (15) 0.8817(11) 3.8(4)
Cu —0.8968 (17) 0.3081(12) 0.9179 (10) 2.8(3)
Ci, —0.8099 (19) 0.2241(14) 0.8857(12) 4.2(4)
Ci; —0.7446 (19) 0.2210(15) 0.8070(12) 4.2
Cis —0.7268 (17) 0.3075(13) 0.7456 (11) 3.4(4)
Cis —0.8155(17) 0.3963(13) 0.7268 (107 3.1(3)
Cie —0.9631 (18) 0.4112(14) 0.7307(11) 3.8(4)
Cia —0.6338(16) 0.3854(12) 1.0013(100 3.2(3)
O1a —0.6174 (13) 0.3986 (10) 1.0771 (8) 5.1(3)
Cis —0.4836 (16) 0.3203(12) 0.8749(11) 2.9(3)
O —0.3654 (14) 0.2961 (11) 0.8726 (9) 5.9(3)
Coa —0.5430(20) 0.5229(15) 0.7582(13) 4.7
Oqa —0.4890 (15) 0.4983(12) 0.6895(9) 6.3(3)
Cas —0.4774 (21) 0.5628 (16) 0.9135(13) S5.0(3)
O:5 —0.3323(18) 0.5570(13) 0.9471 (11) 7.6(4)

@ Numbers in parentheses are estimated standard deviations
occurring in the last digits listed. ® These values of B are the equiva-
lent isotropic thermal parameters corresponding to the anisotropic
thermal vibration tensors having the following components (X 105),

Atom Bu B Bss B Bia Be3

Ru, 599 (14) 387 (9) 265(6) 46 (10) —25(9) —12(6)
Ru, 848 (17) 476 (10) 302 (7) —221 (12) —34 (10) —4(7)
Rus 563 (15) 298 (9) 220(6)  16(10) —6(8) 2(6)

lecular unit, shown in Figures I and 2, is crystallo-
graphically asymmetric but has approximate C, sym-
metry with the twofold axis bisecting the Ru;-Ru,
line and passing through Ru;.

D
c
B
A
(A) (B)
Figure 4. Idealized symmetrical bonding schemes for a (CsHg)M,
system.

The molecular structure may be thought of as derived
from that of Ru3(CO): with the w-electron density of
the cyclooctatetraene rings replacing that of eight CO

groups. The Ru;3(CO);; molecule!s is isostructural with
Table III. Intramolecular Distances® in (COT):Rus(CO)s
Atoms Distance, A Atoms Distance, A
Ru-Rus 2.782 (2) Ru-Cy 2.40(2)
Rul—Rua 2.928 (2) Rul—Cu 2. 18 (2)
Rux-Rus 2.947 (2) Ru-Ci; 2.22(2)
Rul—Cu 2.32 (2)
Cl—Cz 1.42 (2) Rul—Cla 2.91 (2)
Cr-C, 1.42(2)
C:—Cs 1.43(2) Ru-C; 2.92(2)
C.—Cs 1.43(3) Ru-C; 2.30(2)
C(,—Cs 1.43 (3) Ru-C; 2.21 (2)
CG—C7 1.49 (3) RUQ—CG 2.20 (2)
C-C, 1.43(2)
Ru-Cs 2.37(2)
Cg—Clo 1.39 (2) RUQ—CZ 2.22 (2\
Clo—Cu 1.45 (2) Rua—C1 2.19 (2)
Cu—Clz 1.44 (2) RUQ—CS 2.14 (2)
Ci-Cis 1.36(2) Ru;-C; 2.60(2)
Ci:—Cis 1.45 (3)
C“—Cls 1 44 (2) RLIa—le, 2.35 (2)
Ci:—Ciz 1.45(2) Ru;—Cis 2.16 (2)
Ci-Cy 1.39(2) Ru;—Cy 2.15(2)
RUQ—Clo 2.15 (2)
RUQ—CU 2.56 (2)
Ru—Cia 1.82(2) Ci4-01a 1.18 (2)
Ru-Cis 1.80(2) Ci5-O1s 1.19(2)
RUZ—CZA 1 . 83 (2) CzA—OZA 1 421 (2)
Ru-Con 1.79 (2) C;p-O:8 1.23(3)

@ Numbers in parentheses are estimated standard deviations
occurring in the last digit listed.

Oss(CO)2'® and has Ru-Ru distances of 2.855, 2.844,
and 2.851 A. In the present instance, the metal-metal
bond distances (Rui-Ru, = 2.782 (2) A, Ru-Ru; =
2,928 (2) A, and Ruy-Ru; = 2.947 (2) A)° reflect both
in magnitude and variation the inferior ability of CsHs
in comparison with CO to remove w-antibonding elec-
trons from the triangular metal atom cluster. Thus,
the Ru-Ru bonds involving the Ru atom which has no
CO groups are the longer ones.

The most important and interesting features of the
molecular structure have to do with the mode of attach-
ment of the CgH; rings to the Ru; cluster, particularly
because the rings execute some reorientation (presum-
ably an internal rotation) so rapidly in solution at room

(15) E. R. Corey and L. F. Dahl, submitted for publication.
(16) E. R. Corey and L. F. Dahl, Inorg. Chem., 1, 521 (1962).
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Table IV, Intramolecular Angles® in (COT);Ruy(CO)q
Atoms Angle, deg Atoms Angle, deg
Rul—RUrRUQ 61.39 (4) Cu—Rul—Clz 36.3 (6)
Ruz—Rul—Rua 62.09 (4) Clz—Rul—Cla 36.0 (7)
Ru-Ru;-Rus 56.52(4) Ci—Rui-Cps 37.1(6)
Ci—Ru;-Cys 29.4 (5)
Cl—Cz—Ca 126 (1 5) Cu—RUl—Cls 74.1 (5)
Cr-C+Cs 137(1.6)
Cs+C:—Cs 132(1.7) C+Ru,-Cy 28.8 (6)
C—C:—Cs 125(1.7) C+Ru-C; 36.9(N
CiCe-C 127 (1.7) C+Ru,-Cs 37.9(N
Cs—Cr-Cs 132(1.6) Ce—Ru,—C; 36.8 (6)
Cr-Cs—C1 135(1.6) Cr~Rus-C; 74.0(5)
Cs-C-C. 126 (1.5)
Cs—Ru-C, 35.9(6)
Co—C1o—Cu 133(1.5) Cr-Rus-C, 37.6 (6)
Clo—Cu—Clz 132 (1 . 5) Cl—RUQ—Cg 38.6 (6)
Ci—Cir-Cis 127(1.7) CsRu-C; 33.0(6)
Ci-Ci1-Crs 127(1.7) C+Ruz-C; 81.7 (6)
Ci-Cie—Cis 130 (1.6)
C14—C15—C15 133 (1 . 5) Cu—RUa—Clo 34.7 (6)
Ci5—C15-Co 130 (1.6) Ci—Rus-GCy 37.8(6)
Cm—Cg—Clo 125 (1 . 5) Cg—RUa—Cm 37.6 (6)
Cm—RUs—Cls 37.2 (6)
CU—RUQ—Cla 81.9 (5)
OlA—ClA—RLh 176 (1 . 4) C1A—RU1—C13 89.8 (7)
OlB—Cm—Rul 176 (1. 4) Cm—Rul—RUz 83.8 (5)
OZB—CQB_RUZ 179 (1 . 8) ClB—Rul—RLIz 92.8 (5)
0:4-C24-Rus 175(1.7) Coa—Rur-Csn 91.9 (9
Cos-RusRu, 82.3 (6)
C:s-Ru,-Ruy 93.0(6)

s Numbers in parentheses are estimated standard deviations
occurring in the last digit listed.

temperature that only one signal is observed for all
16 protons in the molecule. This ring-to-metal bond-
ing can be conveniently discussed in comparison with
the two symmetrical arrangements shown schematically
in Figure 4.

The arrangement shown in Figure 4A involves a pair
of (1,3-diene)-metal interactions. While this exact
situation has not as yet been observed in a molecule
with a metal-metal bond, it has been seen,'” for ex-
ample, in the solid-state configurations of (COT)Fe-
(CO); and (COT)Fey(CO)s. The relevant (C,H,)Fe-
(CO); residues have the same geometry in both mole-
cules and pertinent average dimensions are M-A =

M-D = 214AMB MC—206AAB—C—
=144A B-C = 140 A, and ZB = ZC = 120°,
ZA = = 130°.

The other mode of ring attachment involves the ring—
metal orientation shown in Figure 4B. In such a com-
plex the bonding can be crudely formulated as follows.
Each metal atom is bound to three ring carbon atoms
in a kind of (w-allyl)metal complex, thereby leaving two
carbon atoms of the ring (designated as A and E)
each with a half-occupied orbital. After allowance
for metal-metal and metal-CO bonds, each metal atom
also has a half-occupied orbital remaining in its valence
shell. Consequently, four atoms (M, M, A, and E),
four orbitals, and four electrons combine to produce a
four-center, four-electron deJocalized bonding system.
This type of bonding has been invoked to account for
the molecular structure of (COT)Fex)(CO);!8 and
(TMCOT)Fey(CO);,'* where TMCOT represents

(17) B. Dickens and W. N. Lipscomb, J. Am. Chem. Soc., 83, 4062
(1961); J. Chem. Phys., 37, 2084 (1962),

(18) E. B. Fleisher, A. L. Stone, R. B, K. Dewar, J. E. Wright, C. E,
Keller, and R, Pettit, J. Am. Chem. Soc., 88, 3158 (1966).
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1,3,5,7-tetramethylcyclooctatetraene, The  pertinent
average geometrical features of these structures are
MB~MC~MD~212A M-E ~ M-A ~
250 A, B-C ~ C-D ~ 1.38 A, A—B~D—E~145
A,and 2£C = 127°,

‘Both of the molecules for which a structure of type
4B has been found are fluxional; there is time-average
equivalence of all ring protons. It seems entirely
reasonable to suppose that the rearrangement pathway
by which the ring passes from one to another of the
equivalent configurations of type 4B carries it through
structures of type 4A. Since the rearrangement pro-
cesses are rapid, it follows that structure 4A must be
only a little less stable (perhaps 5~15 kcalymole} than
4B.

To facilitate discussion of the ring-to-metal inter-
actions in (CsHs):Rus(CO),, we show in Figure 3 a
composite picture of the two crystallographically inde-
pendent (CsHg)Ru, moieties, which would be rigorously
equivalent under strict C, symmetry. The view given
is a projection of each ring upon a plane perpendicular
to a line joining the midpoint of the Ru-Ru axis with
the midpoint of the C;~C; or C;;~C;; axes. The dis-
tances shown are the averages of corresponding dis-
tances in the two separate (CsHs)Ru, portions of the
molecule.

It is clear from Figure 3 that the configuration
in this compound is neither 4A nor 4B but is approxi-
mately halfway between the two. The rotation of the
M-M line about its perpendicular bisector which would
convert orientation 4A into orientation 4B, assuming
the ring to remain fixed, is 22.5°. In fact, the Ru-Ru
line is rotated 9.5° away from orientation 4B. More-
over, the C-C distances in the rings do not differ from
one another significantly, as Figure 3 shows. The ring
conformation is also intermediate, but distinctly closer
to what one might expect for structure 4A. Thus the
ring fragments (4,14), (5,13), (6,12), (7,11) and (8,10),
(1,9), (2,16), (3,15) are each essentially planar, whereas
the five-carbon sequences from (3,15) to (7,11) inclusive
in either direction are noticeably kinked.

The fact that the (CsHg)M. configuration is inter-
mediate between 4A and 4B makes it difficult to give
any simple description of the bonding, and we shall not
attempt to rationalize the structure in this way. In-
stead, it seems more interesting and enlightening to note
that, since structures 4A and 4B presumably do not
differ very much in stability, one of them (4A) probably
corresponding to the activated complex for interchange
among the several equivalent forms of the other (4B),
the configurations lying between 4A and 4B must also
be easily accessible.? It may be that only under the
influence of intermolecular forces in the crystal does
the observed configuration become fixed, whereas in
solution configuration 4B (or, less likely, 4A) is adopted
as the instantaneous structure. Because of the over-
all low symmetry, this will be a difficult point to estab-
lish, however, even if a limiting low-temperature solu-
tion nmr spectrum can be obtained.

With regard to the carbonyl portion of the molecule,
we note that the structure found is entirely consistent
with the observed infrared spectrum in the CO stretch-

(19) F. A. Cotton and M. D. LaPrade, ibid., 90, 2026(1968)
(20) Fluxional molecules should, naturally and in general, be the

most easily distortable molecules, in a sense or direction corresponding
to the pathway of their intramolecular rearrangement.
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ing region. Four bands were observed, one of which is
very weak. For the Ruy(CO), group found, with C,
symmetry, four infrared-active CO stretching modes
would be expected. One of these would likely be
essentially the antisymmetrically coupled stretching
of the two CO groups (1A and 2A) which are approx-
imately perpendicular to the plane of the Ru; triangle.
This mode would have only a slight dipolar transition
moment, thus accounting for the one extremely weak
band.

Lastly, it may be noted that the (CsHs):Ruy(CO)4
molecule is dissymmetric in its idealized C, symmetry.
Since it crystallizes in enantiomeric crystals, it would
perhaps be feasible to study the rate of racemization,
or at least to set a lower limit on it, by preparing solu-
tions from individual single crystals. Racemization
may well be a very rapid process, since it could readily
be accomplished in the following way. The CO(1A)

Transition Metal Carbonyl Anions. I

and CO(2A) groups could swing toward the center of
the Ru(1)-Ru(2) bond and become bridging CO groups.
This sort of interconversion of terminal with bridging
systems is well known, for example, in [(7-C;H;)Fe-
(CO)2]2,21 [(W'CaHs)RU(CO)z]g,zl and COz(CO)g.22 If,
at the same time as the bridges form, the CsHj rings
move slightly so that the plane of the Ru; triangle be-
comes a bisector of the mean plane of each ring, an
intermediate without chirality will be formed, which
may then return to either enantiomer of the chiral
structure with equal probability, thereby accomplishing
racemization. Thus, a study of the rate of racemization
of the (CsHs):Ruy(CO); molecule would be equivalent
to a study of the rate of interconversion of the bridged
and nonbridged Ruy(CO), systems, and would therefore
be of fundamental interest.

(21) F. A. Cotton and G. Yagupsky, Inorg. Chem., 6, 15 (1967).
(22) K. Noack, Spectrochim. Acta, 19, 1925 (1963).

The Course of the

Reduction of Chromium Hexdcarbonyl

William C. Kaska

Contribution from the Department of Chemistry, University of California,
Santa Barbara, California 93106. Received May 23, 1968

Abstract:

a study of the chromium hexacarbonyl reduction has been undertaken.

In order to reveal the chemical and physical properties of group VI transition metal carbonyl anions,

Chromium hexacarbonyl was reduced in

tetrahydrofuran and hexamethylphosphoramide with sodium, potassium, and cesium amalgam, phenanthrene-
sodium, and trimesitylboron sodium., An extensive comparison of infrared spectra suggests the formation of

[Cry(CO)ol?, [Cr(CO):}*, [Cr(CO);HMPT]*", and [Cry(CO),}*~ ions.

cation of the ions are discussed.

he carbonylmetallate ions of group VI? transition

metal elements and their organometallic derivatives
are potentially useful in the synthesis of metal-metal
and metal-metalloid bonds.? With a combination of
suitable ligands these materials are intriguing starting
points toward the synthesis of catenated transition
metal compounds, or “synthetic metals” as they might
be called. These, in turn, offer the possibility of study-
ing solid-state physical and chemical properties such as
magnetic behavior and heterogeneous catalysis.

In other instances, the carbonylmetallate ions may
be valuable in the preparation of organometallic com-
pounds. Such a case in particular has been the emi-
nently successful role of these ions in the synthesis of
cyclobutadiene-metal carbonyl complexes.*

(1) Presented in part at the Third International Organometallic
Symposium at Munich, Germany, Aug 29-Sept 1, 1967.

(2) (a) R. B. King, Advan. Organometal. Chem., 2, 157 (1964); (b)
F. Calderazzo, R. Ercoli, and G. Natta, “Organic Synthesis Via Metal
Carbonyls,” Vol. 1, I. Wender and P. Pino, Ed., John Wiley and Sons,
Inc., New York, N. Y., 1968, p 150.

(3) (a) R. E. Dessy, and P. M. Weissman, J. 4m. Chem. Soc., 88,
5124 (1966); (b) U. Anders and W. A. G. Graham, ibid., 89, 539
(1967); (c) J. K. Ruff, Inorg. Chem., 6, 2080 (1967).

(4 R. G. Amiet, P. C. Reeves, and R. Pettit, Chem. Commun., 1208
(1967).

The conditions for isolation and purifi-

Cl

=,

From another aspect the anions are of interest be-
cause they are isoelectronic with known metal carbonyls.
For example, [Cry(CO)10]*~ 5 is isoelectronic with Mn,-
(CO)yo; [Cr(CO);]*~ is related to the unstable species
Mn(CO); and to the known Fe(CO); molecule. Other
ions such as [Cry(CO),]*>~ and [Rey(CO)s]~ %7 are related
and [Cr(CO)e]4~ is isoelectronic with Fey(CO)s.

Behrens and his coworkers®=1! have reported no less
than five different carbonylmetallate ions of group VI
from various synthetic routes. Some of these ions are
[Cr(CO);5]*, [Cra(CONo]*~, [M0x(CO)s]*~, [Cry( CONal*,
and [CrzH(CO)lo]_.

(5) R.G. Hayter, J. Am. Chem. Soc., 88, 4376 (1966).

(6) G. W. Parshall, ibid., 86, 361 (1964).

(7) R. W. Harrill and H. D. Kaesz, Inorg. Nucl. Chem. Letters, 2,
69 (1966).

(8) H. Behrens and R. Weber, Z. Anorg. Aligem. Chem., 291, 123
(1957).

(9) H. Behrens and J. Vogl, Chem. Ber., 96, 2220 (1963).

(10) H. Behrens and W. Haag, ibid., 94, 312 (1961).

(11) H. Behrens and W, Haag, ibid., 94, 320 (1961).

+ Fe(CO)?™ —> + CO

Fe(CO),
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